Math Analysis

 

 

Upload your solutions at: https://tinyurl.com/AML-2021-ASSIGNMENT1
1. (0.5 points) Give an example of a finite hypothesis class H with VCdim(H) = 2021.
Justify your choice.
2. (0.5 points) Consider Hballs to be the set of all balls in R2
:
Hballs = {B(x,r), x ∈ ℝ2
, r ≥ 0 }, where B(x,r) = {y ∈ ℝ2
| || y – x ||2 ≤ r}
As mentioned in the lecture, we can also view Hballs as the set of indicator functions of
the balls B(x,r) in the plane: Hballs ={ ℎ!.!: ℝ! → 0,1 , ℎ!.! = �!(!,!), � ∈ ℝ!, � > 0}.
Can you give an example of a set A in R2 of size 4 that is shattered by Hballs? Give
such an example or justify why you cannot find a set A of size 4 shattered by Hballs.
3. (1 point) Let X = R2 and consider Hα the set of concepts defined by the area inside a
right triangle ABC with the two catheti AB and AC parallel to the axes (Ox and Oy)
and with AB/AC = α (fixed constant > 0). Consider the realizability assumption. Show
that the class Hα can be (�, �) − PAC learned by giving an algorithm A and
determining an upper bound on the sample complexity mH( �, �) such that the
definition of PAC-learnability is satisfied.
4. (1 point) Consider H to be the class of all centered in origin sphere classifiers in the
3D space. A centered in origin sphere classifier in the 3D space is a classifier hr that
assigns the value 1 to a point if and only if it is inside the sphere with radius r > 0 and
center given by the origin O(0,0,0). Consider the realizability assumption.
a. show that the class H can be (�, �) − PAC learned by giving an algorithm A and
determining an upper bound on the sample complexity mH(�, �) such that the
definition of PAC-learnability is satisfied. (0.5 points)
b. compute VCdim(H). (0.5 points)
5. (1 point) Let H = {ℎ!: ℝ → 0,1 , ℎ! � = � !,!!! ∪[!!!,!!) � , � ∈ ℝ}. Compute
VCdim(H).
6. (1 point) Let X be an instance space and consider H ⊆ {0,1}! a hypothesis space with
finite VC dimension. For each � ∈ X, we consider the function zx: H →{0,1} such
that zx(h) = h(x) for each ℎ ∈ H. Let Z = {zx: H →{0,1}, � ∈ X}. Prove that
VCdim(Z) < 2VCdim(H)+1.
Ex-officio: 0.5 points

The post Math Analysis first appeared on COMPLIANT PAPERS.

WhatsApp
Hello! Need help with your assignments?

For faster services, inquiry about  new assignments submission or  follow ups on your assignments please text us/call us on +1 (251) 265-5102

🛡️ Worried About Plagiarism? Run a Free Turnitin Check Today!
Get peace of mind with a 100% AI-Free Report and expert editing assistance.

X