AMS361 power series method-differential equations with variable coefficients

Detailed Instructions Download |  oreceivefullcredityoumustshowallwork.ThereareFIVEproblemsworthatotalof100points.Youhavethreedays(72hours)todothisexam.Inthisexam,youwillmodifytheprovidedcodesinthisfile.YoumaydownloadthefileandworkonitusingAnacondaDistribution(localhost)orCoCalc.Inordertobeaccepted,youMUSTsubmitthetwofollowingfiles:a.AsinglePDFfileshowingallyoursupportingworkwiththename:b.AfileonJupyternotebookincludingallcodingassignmentswiththename:Thepowerseriesmethodappearstobeoneoftheefficientmethodtosolvedifferentialequationswithvariablecoefficients.Thiskindoftechniquecanbeusedtosolvemanyofthenonelementarydifferentialequationsthatappearmostfrequentlyinapplicationssuchasacoustic,healflow,andelectromagnetic,radiation.(a)(2)Brieflydiscusstheideaofthepowerseriesmethodtosolvedifferentialequationsoftheformy′′(x)+p(x)y′(x)+q(x)y(x)=f(x)assumingthatp(x),q(x),andf(x)haveapowerseriesexpansion.(b)Findgeneralsolutionsinpowersofxofthedifferentialequations.Statetherecur–rencerelationandtheguaranteedradiusofconvergenceineachcase.i.(4)y′′−x2y′−3xy=0ii.(4)y′′+xy=0(anAiryequation)(c)Findathree–termrecurrencerelationforsolutionsoftheformy=!cnxn.Thenfindthefirstthreenonzerotermsineachoftwolinearlyindependentsolutions.i.(4)(x2−1)y′′+2xy′+2xy=0ii.(4)(1+x3)y′′+x4y=0(d)(6)Solvetheinitialvalueproblem“y′′+xy′+(2×2+1)y=0y(0)=1,y′(0)=−12.TheHermiteequationoforderαisy′′−2xy′+2αy=0.(a)(8)Derivethetwopowerseriessolutionsy1=1+∞#m=1(−1)m2mα(α−2)…(α−2m+2)(2m)!x2mandy2=x+∞#m=1(−1)m2m(α−1)(α−3)…(α−2m+1)x2m+1(2m+1)!.Showthaty1isapolynomialifαisaneveninteger,whereasy2isasolutionifαisanoddinteger.(b)(4)TheHermitepolynomialofdegreenisdenotedbyHn(x).Itisthenth–degreepolynomialsolutionofHermite’sequation,multipliedbyasuitableconstantsothatthecoefficientofxnis2n.ShowthatthefirstsixHermitepolynomialsareH0(x)≡1,H1(x)=2x,H2(x)=4×2−2,H3(x)=8×3−12x,H4(x)=16×4−48×2+12H5(x)=32×5−160×3+120x.(c)AgeneralformulafortheHermitepolynomialsisHn(x)=(−1)nex2dndxn$e−x2%(1)Verifytheformula(1)byfollowingthestepsoutlinedbelow.i.(2)Showthatv:=e−x2satisfiesthedifferentialequationv′+2xv=0.ii.(2)Differentiateeachsideofthisequationtoobtainv′′+2xv′+2v=0.iii.(2)Differentiateeachsideofthelastequationntimesinsuccessiontoobtainv(n+2)+2xv(n+1)+2(n+1)v(n)=0.iv.(2)Definey=(−1)nex2v(n).Showthaty′′−2xy′+2ny=(−1)nex2&v(n+2)+2xv(n+1)+2(n+1)v(n)‘.ThenexplainwhyyisasolutionoftheHermiteequationofordern.(d)(2)WriteacodeinSageMathtogeneratethefirstsixHermitepolynomialsusingtheformulain(1).(e)(2)GraphthesefirstsixHermitepolynomialsusingSageMathtoinvestigatethecon–jecturethat(foreachn)thezerosoftheHermitepolynomialsHnandHn+1are“interlaced”–thatis,thenzerosofHnlieinthenboundedopenintervalswhoseendpointsaresuccessivepairsofzerosofHn+1 Click here to request for this assignment help Get Asnwer

The post AMS361 power series method-differential equations with variable coefficients appeared first on Intel Writers.

WhatsApp
Hello! Need help with your assignments?

For faster services, inquiry about  new assignments submission or  follow ups on your assignments please text us/call us on +1 (251) 265-5102

🛡️ Worried About Plagiarism? Run a Free Turnitin Check Today!
Get peace of mind with a 100% AI-Free Report and expert editing assistance.

X